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1 INTRODUCTION

Many materials have different elastic behavior in tension and compression.

A few examples of such materials are concrete, rock, tire-cord rubber, and soft

biological tissues. As early as 1864, St. Venant [1] recognized this behavior by

analyzing the pure bending behavior of a beam having different stress-strain

curves in tension and compression. Timoshenko [2] originated the concept of bi-

modulus (or bimodular) materials in 1941 by considering the flexural stresses in

such a material undergoing pure bending. Ambartsumyan [3] in 1965 renewed interest

in the analysis of bimodular materials, i.e., materials having different moduli in

tension and compression. Since then, there have been numerous investigations on

the static behavior of bimodular beams; these were surveyed by Tran and Bert [4].

Recently, Bert and Gordaninejad [5] studied bending of thick beams of "multimodular"

materials.

Only a few studies have been made on vibration of bimodular beams. Recently,

Bert and Tran [6] worked on transient response of thick beams of bimodular materials.

The present paper deals with the forced vibration of beams made of "multi-

modular" materials. The transfer-matrix method [7], which computationally is very

efficient, is applied. Also, the beam is modeled as a Timoshenko beam, i.e., both

transverse shear deformation and rotatory inertia are considered.

2 MODELING OF THE STRESS-STRAIN CURVE

The nonlinearity of the stress-strain curve is one of the main difficulties

arising in structures undergoing even moderate deflections. Piecewise lineariza-

tion of the stress-strain relation has been applied to overcome this problem.

Durban and Baruch [8) used a floating piecewise linear approximation to construct

the two "best" straight lines approximatingthe Ramberg-Osgood stress-strain relation

[9]. Bert and Kunar [10] recently presented experimental stress-strain curves
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for unidirectional cord-rubber materials and expressed the curves in Ludwik

power-law form with different coefficients and exponents in tension and compres-

sion.

In the present work, a stress-strain curve for aramid-rubber taken from

[0] has been linearly approximated by four segments (two segments in tension

and two segments in compression; see Fig. 1). For choosing the "best" two straight

lines, the area between two fitting lines and the experimental curve in each por-

tion has been minimized. To find comparable moduli for the bimodular case, one

has to minimize the area between two straight lines and the experimental curve.

Finally, for the "unimodular" case, the "best" single straight line is used (see

Appendix A).

3 CLOSED-FORM SOLUTION

Consider a solid rectangular-cross-section beam of thickness h and length

Z. The beam coordinates are taken such that the xy-plane coincides with the mid-

plane of the beam and the z-axis is measured positive downward. For a four-

segment approximation of the normal stress-strain curve, considering the general

case (i.e., when - h/2 < ac , at < h/2), the following stress field has been

considered for the case of convex bending (see Figs. 1 and 2).

ElC €c + Ezc(Cx'Clc) - h/2 < z < ac

El CC ac < z < ZI lx n tEIt x  

zn < z < at

Elt C1
t + E2 t( x - e l ) at < z < h/2

TXZ "GYxz (2)

where E1C,E2c,E1t,:2t,G,ec, and £1 are material constants, :x is the axial nor-

mal stress, cx Is the axial normal strain, Yxz is the transverse shear strain, Txz

is the transverse shear stress, and zn is the location of the neutral surface.
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Fig. 1 Multimodular model.

Fig. 2 Stress Distribution of a Multimodular Beam for
Convex Bending



5

It is noted that this material is linear elastic in shear. Comparison of Figs.

1 and 2 leads to

ex = K(z- zn)  (3)

ic = K(a c -z n) (4)

C n
t
€l= c(at -zn) F5

Using linear strain measure, one obtains

x Ux =  U,x +  Z lx (6)

Y = W + U z W(6

Comparison of equations (3) and (6) gives

ux = "Zn ' ,x = (7)

Note that ( ) denotes a( )/ax.

Timoshenko beam theory is implemented here, by using the definitions of the

normal and transverse shear stress resultants and moment, each per unit width as

follows: h/2 h/2

(N,Q) = --(axTxz)dZ I M f z z x dz (8)

-h/2 -h/2

One can write the constitutive relation for a multimodular beam as

B 1
{-+C; B" Do 0 (9)

B+C' D+CM 0 ()

Q0 0 S 0 0 S wL o o . ,x +,j L o I ,x

were A, B, D, and S denote the respective extensional, flexural-extensional

coupling, flexural, and transverse shear stiffnesses defined by

I
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h/212 h/2

(A,B,D) = f (1 ,z,z2)Ei(k)dz k S K G dz (10)

-h/2 -h/2

Here, the stiffnesses CN, CB, CM, and CD are not present in unimodular or bi-

modular materials (see Appendix B). In equation (10), t and c denote tensile-

strain and compressive-strain regions, respectively, and K 2 is the shear correction

coefficient*. The general equations of motion, if zn (neutral-surface location)

is constant along the beam are

A'u + B'4 = Pu + Ripxx ,xx "tt tt

Sx) = Pw - q(x,t) (11)S(Wxx , tt

(B"U ,x + Do S(W + ) = Ru +

, xx 'xxRutt + 1t

where h/2

(P,R,I) = h P(lzz 2)dz
-hI/2

and p is the density of material.

For guided-guided boundary condition, i.e.,

u(Ot) = u(L',t) = 0 ; 4(0,t) = iP(,t) = 0
(12)

Q(O,t) = Q(Xt) = 0 (2

if

q(xt) = qo cos ax cos at (13)

then the following sets of functions satisfy the equations of motion

u(x,t) = U sin ax cos at ; p(x,t) = T sin ax cos at (14)

w(x,t) = W cos ax cos at

In actuality, enforcement of the axial-free equilibrium equation of elasticity
requires that K for a multimodular beam (even a single-layer one, such as treated
here) be a function of the level of normal strain (through the piecewise segmenta-
tion of the stress-strain curve). However, in this paper, KL is assumed to be a
constant.



7

where

= 2nf , a = mr/k (m= 1,2,3,...) (15)

f circular frequency of the excitation, and

= 0o(S-)(g[-2RR2)

(Sa2-PQ2)[B'2-RQg)(B"2-RS12)-(D 2+S-IQ2)(A'02-PQ2)]+(S,)2(A'C2-pQ2)

(16)
_ AY 2 .p 2  U ; = 1 (Sa)(A'a2 "po2)I 5

U 0 22-PR2B'a2 - Rjj 2  Sa2 PQ2  B 'o -Rt

Since from equations (7)

z - / (17)

then

z B'a2-RR2 _ constant (18)Zn  - P2

4 TRANSFER-MATRIX SOLUTION

The transfer-matrix model used in the present study is the same as that

employed in [5] except for the station matrix (see Appendix C), which here in-

cludes more terms due to the motion. The transfer matrix for the assumed beam

is of the following form Ns-l

[SINs+1 = [Tf] a/2[Ts] il i[Tf] i[Tsi}[Tf]6x/2[S]o (19)

where [Tf]i is the field matrix, [T s]i is the station matrix, Ns is the number

of stations, Ax/2 is the length of each of the half fields at the ends of the

beam, At is the length of each of the whole fields, and [SINs+1, [5]o are state

Tvectors, i.e., (u,w,v,N,Q,M) , at the two ends of the beam.

In the calculation of the stiffnesses for the cases where the axial force is

not zero, the neutral-surface location and the corresponding distances to the

"break points" (ac and at) in the ax vs z curve are not constant and not known

a-priori. Therefore, an iterative technique has been employed to compute the

neutral-surface locations zn, also ac and at. One must first assume (2Ns +2)
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sets of values of zn, ac, and at and then compute the sitffnesses and solve the

governing equations for the state vector. Finally, by using equations (C.l),

(C.3), and (C.4), compute the new values of zn, ac , and at. Obviously, if the

assumed and computed sets of zn, ac , and at are in sufficiently close agreement,

the problem is solved; otherwise, assume the calculated set zn, ac , and at and

repeat the procedure.

5 NUMERICAL RESULTS

The numerical results are presented for a thick, multimodular beam with a

rectangular cross section. The material of the beam is chosen to be aramid cord-

rubber which is used in automobile tires (see Table 1). Four different boundary

conditions are investigated (see Table 2) and comparisons are made between multi-

modular, bimodular, and unimodular models for each set of boundary conditions.

In this study, a mesh of twenty-five elements is used with each element being of

length of 0.32 in. The shear correction coefficient is taken to be 5/6.

In order to validate the transfer-matrix solution (TMS), Fig. 3, a compari-

son is made between the closed-form solution (CFS) and the TMS for a guided-guided

beam with cosine load distribution (case 1). Also, a comparison is made among

unimodular, bimodular, and multimodular (static and dynamic) cases (see also

Table 3) for f = 100 Hz. As one can see, there is excellent agreement between

the TMS and CFS results. However, this agreement can be improved even further

by increasing the number of elements.

For the other cases (2-4), the CFS is not available; therefore, in Figs. 4,

6, and 8 comparisons between different models (one, two, and four segment approxi-

mations) are made. As one might notice in all four cases, there is considerable

difference between transverse deflection of multimodular and bimodular beams on

one hand and that of the unimodular model on the other hand. In contrast, there

is no substantial difference between multimodular and bimodular results.

Another interesting observation in Fig. 4 is that for f = 100 Hz, the

unimodular beam is in the range of its first mode, whereas the bimodular and multi-
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Table 1 Elastic properties and geometric parameters for an
aramid-cord rubber beam

Longitudinal Young's Modulus, Londitudinal-Thickness Shear
MPa (psi x1I0 -  

.. Modulus, MPa (psi x lO " 3

Model* Tension Compression Tension and Compression

.E2t E Elc Ezc G

M 4000 2896 221 71
- ______(0.580) (0.420) (0.032) (0.01)

E t EbC
b b__ __ _ _

B 3240 124 3.70 (0.537)
to (0.470) (0.018)

E E
U 1896 1896 3.70 (0.537)

1 (0.275) (0.275)

u Beam length 20.32 cm (8.0 in.)"L .4J

$! Beam thickness 1.52 cm (0.6 in.)

Beam width 2.54 cm (1.0 in.)

M ' multimodular, B -- bimodular, U nu unimodular.

Table 2 Summary of cases considered

CASE BOUNDARY CONDITION CASE BOUNDARY CONDITION
NO. AND LOAD POSITION NO. AND LOAD POSITION

1 3_

24

74 [
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3.20

BIMODULAR CFS & TMS

0. isUNIMODULAR CFS

UNIMODULAR TMS
MULTIMODULAR CFS & TMS

0 .1

0.00-

LUJ

.0

oIle

-0. 10-

-0.20

0.0 0.1 0.2 0.3 0.14 0.5
DIMENSIONLESS POSITION, x/z (FOR HALF OF THE BEAM)

Fig. 3 Comparison among multimodular, bimodular, and unimodular deflection
distribution for closed-form and transfer-matrix solutions of guided-quided
aramid-cord rubber beam (f =100 Hz)

.... ...... .
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Table 3 Comparison between CFS* and TMS for an aramid-cord rubber beam
(case 1)t, f = 100 Hz

x 102, lb Q x 10, lb M, lb-in.

CFS TMS CFS TMS CFS TMS

0.00 -0.169 -0.164 0.000 0.000 0.203 0.203

0.02 -0.168 -0.162 -0.198 -0.200 0.201 0.202

0.06 -0.157 -0.152 -0.585 -0.587 0.189 0.189

0.10 -0.137 -0.132 -0.935 -0.937 0.164 0.165

0.14 -0.108 -0.104 -1.226 -1.228 0.129 0.130

0.18 -0.072 -0.069 -1.141 -1.143 0.086 0.087

0.22 -0.032 -0.031 -1.565 -1.566 0.038 0.038

0.26 0.011 0.010 -1.590 -1.591 -0.013 -0.013

0.30 0.052 0.050 -1.514 -1.516 -0.063 -0.063

0.34 0.091 0.087 -1.344 -1.346 -0.109 -0.109

0.38 0.123 0.119 -1.089 -1.091 -0.148 -0.148

0.42 0.148 0.143 -0.766 -0.768 -0.178 -0.178

0.46 0.164 0.158 -0.394 -0.396 -0.196 -0.197

0.50 0.169 0.163 0.000 0.000 -0.203 -0.204

0.54 0.164 0.158 0.394 0.396 -0.196 -0.197

0.58 0.148 0.143 0.766 0.768 -0.178 -0.178

0.62 0.123 0.119 1.089 1.091 -0.148 -0.148

0.66 0.091 0.087 1.344 1.346 -0.109 -0.109

0.70 0.052 0.050 1.514 1.516 -0.063 -0.063

0.74 0.011 0.010 1.590 1.591 -0.013 -0.013

0.78 -0.032 -0.031 1.565 1.566 0.038 0.038

0.82 -0.072 -0.069 1.141 1.143 0.086 0.087

0.86 -0.108 -0.104 1.226 1.228 0.129 0.130

0.90 -0.137 -0.132 0.935 0.937 0.164 0.165

0.94 -0.157 -0.152 0.585 0.587 0.189 0.189

0.98 -0.168 -0.162 0.198 0.200 0.201 0.202

1.00 -0.169 -0.164 0.000 0.000 0.203 0.203

CFS ' closed-form solution; TMS - transfer-matrix solution
+ 0.3305 0 < x/t < 0.22

tFor case 1, Z = zn/h is piecewise constant, equal to - 0.3305 0.22 < x/ < 0.78
+ 0.3305 0.78 < x/z < 1.00
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* BIMODULAR

MULTIMOOULAR (STATIC) ---

0. 15-hLA

MULTIMODULAR

--------------------

0.00-

L-

-0.0 is

-0. 20

0.0 0.1 0.2 0.3 0.'4 0.5

DIMENSIONLESS POSITION, x/z (FOR HALF OF THE BEAM)

Fig. 4 Comparison among multimodular, bimodular, and unimodular deflection
distribution for transfer-matrix solution of hinged-hinged, ar-amid-cord
rubber beam (f =100 Hz)
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0
* BIMODULAR

------ MULTIM00ULAR (STATIC)

UNIMODULAR

MULTIMODULAR

0.15s

0. 10- -

0.5

0.05 ----------------

0O.0 0. 1 0.2 0.3 0.4 0.5

DIMENSIONLESS POSITION, x/z (FOR HALF OF THE BEAM)

Fig. 6 Comparison among multimodular, bimodular, and unimodular deflection
distribution for transfer-matrix solution of clamped-clamped aramid-cord
rubber beam (f =100 Hz)
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0 -

I= 0.27

I C

-0.

-0.0 >

X5 7

1 -.9-

Cn -0.3 - ----

0.4

0.0 0.1 0.2 0.3 0.4 0.5
DIMENSIONLESS POSITION, x/z (FOR HALF OF THE BEAM)

Fig. 7 Transfer-matrix solution of clamped-clamped, aramid-cord rubber
beam (f 100 Hz)



16

* BIMODULAR

0.8---- rWI.LIMODULAR (STATIC) -
UNIMODULAR ~~

0. 6 ___ MULTIM0DULAR I

0. 4-:

190.2 0 -

0.

0.0 0.2 0.14 0.6 0.8 1.0

DIMENSIONLESS POSITION, x/Q.

Fig. 8 Comparison among multimodular, bimodular, and unimodular deflection
distribution for transfer-matrix solution of clamped-free aramid-cord rubber
beam (f - 100 Hz)
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modular beams are between their first and second modes. The explanation for this

is that, for this case (2), most of the layers of the beam are under compression

and since Elc, E2c, and Eb are much smaller than E (see Table 1), then the uni-

modular beam is stiffer than the other two. Therefore, the fundamental frequency

of the unimodular beam is higher than those of the bimodular and multimodular

beams.

Also, the distributions of u (axial displacement), ; (bending slope), N (axial

force), & (transverse shear force), and M (bending moment) are shown graphically

in Figures 5, 7, and 9 for f taken to be 100 Hz. Note that for cases I and 3

this frequency is less than the fundamental frequency, whereas for cases 2 and 4,

the frequency of 100 Hz is in the range of the first and second modes. The first

three mode shapes of a clamped-free beam of multimodular material is investigated

in Fig. 10. For this case, the natural frequencies associated with the first

three modes are fl = 30.9 Hz, f2 - 131.1 Hz, and f3 = 278.5 Hz.

Finally, by rewriting the equations of motion in a new form (N'x = P1 utt'

M'x "= tt Qx = P2u'tt -'q(x,t)), the effect of translatory and rotatory

inertia coefficients on axial force for a thick multimodular clamped-clamped

beam (f = 100 Hz) is studied (see Table 4). The results show the significant

effect of I and slight effect of P1 as one looks at it through full theory

(vibration) as compared to the static case (I = P1 = P2 = 0).

6 CONCLUSIONS

An analysis of forced vibration of a thick beam with a rectangular cross

section and made of "multimodular" material is presented. In this study,

numerical results obtained by both the closed-form and transfer-matrix methods

are given for a beam made of aramid-cord rubber.

Comparisons are made on one hand between closed-form and transfer-matrix

results and on the other hand, among unimodular, bimodular, and multimodular

i
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Fig. 30 Investigation of the first three mode shapes of thick niultimodular,
clamped-free aramid-cord rubber beam with rectangular cross section.
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Table 4 Effect of translatory and rotatory inertia coefficients on axial
force for a thick multimodular cantilever beam (f = 100 Hz)

Axial force, lb x 103* _____

x/L I,P1,P2#O 1=0 PI&P 2#O I&P1=0 P2#0 P1=0 I&P2#0 I,Pi,P,=0

Full Theory _______________ Static

0.00 11.74 11.76 -0.1399 -0.1621 -0.0699

0.02 11.49 11.51 -0.1399 -0.1621 -0.0699

0.06 10.56 10.58 -0.1399 -0.1621 -0.0699

0.10 8.90 8.92 -0.1399 -0.1621 -0.0699

0.14 6.69 6.73 -0.1399 -0.1621 -0.0699

0.18 4.15 4.19 -0.1399 -0.1621 -0.0699

0.22 1.44 1.48 -0.1399 -0.1621 -0.0699

0.26 -1.26 -1.21 -0.1399 -0.1621 -0.0699

0.30 -3.82 -3.76 -0.1399 -0.1621 -0.0699

0.34 -6.09 -6.03 -0.1399 -0.1621 -0.0699

0.38 -7.97 -7.91 -0.1399 -0.1621 -0.0699

0.42 -9.38 -9.31 -0.1399 -0.1621 -0.0699

0.46 -10.25 -10.18 -0.1399 -0.1621 -0.0699

0.50 -10.54 -10.47 -0.1399 -0.1621 -0.0699

1 lb =4.448 newtons
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models. These results show a considerable difference between the unimodular and

bimodular models and a slight difference between the bimodular and multimodular

models. Therefore, although a four-segment model is a better approximation, the

two-segment approximation gives nearly the same results. This proves that the

bimodular model precision is a good approximation.

The values of the first three mode shapes for the clamped-free case are pre-

sented. Finally, the effects of axial translatory and rotatory inertia coefficients

on axial force for a clamped-clamped beam are discussed.

The transfer-matrix method is found to be very effective in terms of compu-

tational time and also in terms of the accuracy of results, which agree very well

with the closed-form solution.

References

1. Saint-Venant, B., Notes to the 3rd Ed. of Navier's Reswne des Zecons e Za

Resistmnce des corps SoZides, Paris, 1864, p. 175.

2. Timoshenko, S., Strength of MateriaZs, Pt. II. Advanced Theory and Problems,

2nd Ed., Van Nostrand, Princeton, NJ, 1941, pp. 362-369.

3. Ambartsumyan, S.A., "The Axisymmetric Problem of a Circular Cylindrical Shell

Made of Material with Different Stiffnesses in Tension and Compression",

Izvestiya Akademiya Nauk SSSR Mekhczika, No. 4, 1965, pp. 77-84; Engl. Transl.,

National Tech. Information Center, Document AD-675312, 1967.

4. Tran, A.D. and Bert, C.W., "Bending of Thick Beams of Bimodulus Materials,"

Caputers and Structures, Vol. 15, 1982, pp. 627-642.

5. Bert, C.W. and Gordaninejad, F., "Deflection of Thick Beams of Multimodular

Materials", InternationaZ JornaZ for NwricaZl Methods in Engineering, to

appear.

6. Bert, C.W. and Tran, A.D., "Transient Response of a Thick Beam of Bimodular

Material", Earthquake Engineering ad StructuraZ TDynmics, Vol. 10, 1982,

pp. 551-560.

Ik



22

7. Pestel, E.C. and Leckie, F.A., Matrix Methods in Elastomechanics, Van Nostrand,

Princeton, NJ, 1963.

8. Durban, D. and Baruch, M., "Floating Piecewise Linear Approximation of a

Nonlinear Constitutive Equation", AIAA JournaZ, Vol. 12, No. 6, June 1974,

pp. 868-870.

9. Ramberg, W. and Osgood, W.R., "Description of Stress-Strain Curves by Three

Parameters", NACA TN 902, 1943.

10. Bert, C.W. and Kumar, M., "Experimental Investigation of the Mechanical Behavior

of Cord-Rubber Materials", Univ. of Oklahoma, Office of Naval Research Contract

N00014-78-C-0647, Technical Report No. 23, July 1981.

APPENDIX A: FITTING MINIMIZED CURVES TO THE STRESS-STRAIN CURVE

1. Multimodular Case I"

Consider the nonlinear stress-strain curve shown in Fig. A.l. For any arbi-

trary point (eat) in the tension region (E O), there are two straight lines

such that

g(E) t t t t) t (A.l)

The equation of a stress-strain curve is

o(E) = Kcn E > 0 (A.2)

where K and n are constants depending on the material. To find the proper "break

point" (et , t), the area between the approximated curve g(c) and the actual experi-

mental curve a(E) has to be minimized. The mentioned area can be expressed

t t

A =I If [g, () - a(e-))dr1 + If (E) - G(e)]dEj (A.3)

0 C

Substitution of equations (A.l) and (A.2) into equation (A.3) and performing the

integrations gives
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Fig. A.1 Multimodular model.

zE Eb

Fig. A-2 Bimodular model.

,tt

Fiq. A.3 Unimodular model.
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ttt nt 1  1 t + t E:t t ~ ~I £ t Ktnn+l + + )(ef )n) -(t ] (A.4)

By searching in the region of il (O, tf) x (O,0tf), one is able to find a point

(E , t) such that A is minimized locally. Note that a few other methods (e.g.,

least-squares method) have been tried but it turned out that the absolute minimum

point was outside of the region s.

2. Bimodular Case

For this case, the least-squares method has been used. As shown in Fig. A.2,

there is a line such that
t
f 2

[EbtC K en] de (A.5)

0

can be minimized in o. Here, Ebt is the slope of that line. By taking the

derivative of equation (A.5) and equating it to zero, one has

t

Cf

dI Ebt 0 b E-Ke n] de = 0 (A.6)dEb t  
0

By solving equation (A.6) for E bt, one obtains

Ebt = n3+- (f)n (A.7)

b n n+2 C7

For example, for aramid-rubber in the tension region, the following parameters

are found (the other constants are listed in [10]):

nt = 1.22 ; Kt = 1.1 x 106 psi Cft = 0.029
(3)(1.1 16 1.22-1x10ps

Ebt -- 11.2+ 1 (0.029) = 0.47 x 106
b 1.22+2

An analogous calculation can be applied for the compression side of the bend,

i.e., EbC can be found, provided that Kc, nc , and Efc are known.

A similar approach can be used to obtain a best-fit single straight line

('unimodular" approximation) [5]; see Fig. A.3.



25

APPENDIX B: THE BEAM1 STIFFNESSES FOR RECTANGULAR-SECTION BEAMS OF MULTIMODULAR
MATERIALS

For the assumed four-segment model, there are two different bending cases in

general, convex downward and concave downward bending. In convex downward bending,

the top layer of a beam is in compression and the bottom layer in tension.

A stress distribution for convex downward bending is shown in Fig. 2. As

one might notice, the location of zn, ac and at fall within the depth of the beam

(this is case is the most general case). Substitution of equation (1) into equa-

tion (8) and using equations (3), (4), and (5) leads to

fac  
z n  

a t

N : f [KElC(ac- Zn) + KE2
c (z - ac)]dz +  <E c ( z -zn)dz +  <El ( z - z n ) dz

-h/2 ac  zn

h/2
+ IKElt(at- zn) + KE2t(z - at)]dz (B.l)

at

and

M = c Elc(ac -Zn) + KE2 c(z- acz dz+ z- Zn)z dz
-h/2 a c

a h/2

+ ft1(z- zn)z dz + f [CElt(at- Zn ) + KE2 t(z-at)z dz (B.2)

zn  at

Equations (B.l) and (B.2) can be written in the following form

(. EJnE{[ac d z n + at h/2

(-Z EC dz + n ECdz + Eltdz + f E2tdz]

-h/2 ac  zn at

a+ ac  h/2 h/2

t-dz - f a tdz]}

-h/2 -h/2 a t at

..........1
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a tz a h/2
ac[ E2Cz dZn Czdz+ E t z dz+ ' E2 tz dz

-h/2 ac  zn  at

ac  ac h/2 h/2

+[i E2 Cacdz + a E Cacdz+ E tatdz- E2tatdz]} (B.3)

-h/2 -h/2 at  at

a( zn d+Z z at  rh/2  t

M a c-n{ E 2 Cz dz +1r EICz dz+ a z Elt dz+h E2 tz dz]

-h/2 a z a

ac  dz+a h/2 h/2 Etd

2 E1 zd f Et t
-h/2 -h/2 at at

at h

E2 zdzzdz+ Eltz2 dz + 1 E2tz dz]

-h/2 ac  zn  at

+ ac E~ac{ Ecc h/2 h/2
+1- 1a E 2Ca cdz + a El1C a cdz+ Ih/ ElIt a tdz- f h2E 2 ta tdz]} (B.4)

-h/2 -h/2 at a t

Combining equations (7) and (9), one gets

N = (-<z n)A' + <B' (B.5)

M = (-KZ n)B" + KD' (B.6)

Comparison of equations (B.3) and (B.5) with equations (B.4) and (B.6) and

considering equations (10), one finds that

a c  h/2

CA N= f (E1c'2 c )dz + h (EIt- E2t)dz
-h/2 at

a h/2
CBN C (ElC -E 2c)acdz + I (EtE2 t)atdz

-h/2 at

I 7 m ~ ' '
m n lil' M m m .. . " '" ' ' '- .... = .. . " =: t
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a .h/2

C c (EC- E 2 )z dz + (E 1 
t - E2 t)z dz

-h/2 ac

a h/2

CDM : C (E I c _-E 2 c)a cz dz + (Elt-E 2t)atz dz (B.7)

-h/2 at

Eight possible cases may occur depending on the location of zn, a

and at. These cases have been analyzed as the same as the general case as follows

(for convex downward bending).

There are seven more possible cases which have been discussed in Ref. [5].

However, the case explained here is the most general case.

APPENDIX C: TRANSFER-MATRIX FORMULATION

Under harmonic excitation, the steady-state-response displacements u, w, and

are also harmonic in time. Therefore, equations (11) can be written as

x :- f2pu -- 2 R ; Qx - 02p -q(x,t)'x (C.l)
x - Q = - 2R- - 21

where all of the barred quantities are amplitudes, i.e., N(x,t) N(x) sin t, etc.

The continuity at each station implies

-R iL -R = L -R = L (C.2)

(R and L denote right and left, respectively)

Also, equation (C.1) in finite-differential form for each station i is

NiR = AiL - 12puiL ; i R : oiL _ Q2pwiL - Q, C3

i i 1j(C 3i R  = M L  - 2RR i L _ Q ,l i L

where Qi is the concentrated load amplitude at station i.

Equations (A.2) and (A.3) are written in matrix notation as
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u 1 0 00 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

Q ..2P 0 -p.2R 1 0 0 0 N (C.4)

0 -Q2p 0 0 1 0 QiQ

-Q2R 0 -Sj21 0 0 1 0 M

1 0 0 0 0 0 0 1 1
i i i1

or

R L
[S] = IT]" [S]

i s I i

where T s] represents station matrix at station i. In matrix notation the

equilibrium equation for each field under a distributed load q(x) is

u 1 0 0 B'Lz B -D' _ -B'',K uy 2y y 2-f Km

w0 1 - 2y T- 4 2y 4-f Km - q K

E-A(,,)2 B',) 'k KK
y 2y y2-,, K

N 0 00 0 0

Q 0 0 0 0 1 0 -Kq

M0 0 0 0 At 1 -Km

0 0 0 0 0 0 1

(C.5)

where At At

y-B'B"-A'D' ; Kq-- q( )d ; Km f q( )d (C.6)

0 0

Values of Km and K for various loadings are listed in Table 5. Equation (C.6)

% aq

also can be wrtten as
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Table 5 Values of K mand K qfor various loadings

Type of Loading Km K q

Uniform Load

q(x) q

T ~ ~q (, Z)2/2 q0

Cosine Load
q(x) q Cosa ' q q~-si

0 zo 0 (Co q x n
n~r n~r n,-sn

Co xii1) x si x sin x.1
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L R
[S] ET.] I[S] (C.7)i+1 " i i

The matrix [T.]. is called the field matrix.

APPENDIX 0: COMPUTATION OF zn , a , AND at

For multimodular beams, the following equation is not sufficient to deter-

mine the neutral-surface location zn

Zn = B'M- D'N (D.1)A'M- B"N

even for cases where N = 0

z n = B'/A' (D.2)

Two more equations are needed for computing zn because the stiffnesses are not

only dependent on zn but they are functions of a and a as well. By comparison

of Figures 1 and 2, one can get (for the convex downward case)

= (Eic/Efc) (h/2 + Zn) - zn (D.3)

at = (Elt/ ft) (h/2 - Zn) + zn (D.4)

For the concave downward case

a = (eic/c) (h/2 - Zn) + zn (D.5)

at = (Elt/cft) (h/2 + Zn) - zn (D.6)

The system of nonlinear equations (D.1), (D.3), and (D.4) for the convex down-

ward case, or equations (D.1), (D.5), and (D.6) for the concave downward case,

can be solved by using iteration of the Gauss-Seidel type.
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